Rough Set Based Generalized Fuzzy $C$ -Means Algorithm and Quantitative Indices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rough Set Based Generalized Fuzzy C-Means Algorithm and Quantitative Indices

A generalized hybrid unsupervised learning algorithm, which is termed as rough-fuzzy possibilistic c-means (RFPCM), is proposed in this paper. It comprises a judicious integration of the principles of rough and fuzzy sets. While the concept of lower and upper approximations of rough sets deals with uncertainty, vagueness, and incompleteness in class definition, the membership function of fuzzy ...

متن کامل

An Innovative Algorithm for Feature Selecton Based on Rough Set with Fuzzy C-means Clustering

Feature selection is a fundamental problem in data mining, especially for high level dimensional datasets. Feature selection is a process commonly used in machine learning, wherein subsets of the features from the original set of features are selected for application of a learning algorithm. The best subset contains the minimum number of dimensions retaining a suitably high accuracy on classifi...

متن کامل

Generalized rough fuzzy c-means algorithm for brain MR image segmentation

Fuzzy sets and rough sets have been widely used in many clustering algorithms for medical image segmentation, and have recently been combined together to better deal with the uncertainty implied in observed image data. Despite of their wide spread applications, traditional hybrid approaches are sensitive to the empirical weighting parameters and random initialization, and hence may produce less...

متن کامل

Intra-cluster Similarity Index Based on Fuzzy Rough Sets for Fuzzy C-Means Algorithm

Cluster validity indices have been used to evaluate the quality of fuzzy partitions. In this paper, we propose a new index, which uses concepts of Fuzzy Rough sets to evaluate the average intra-cluster similarity of fuzzy clusters produced by the fuzzy c-means algorithm. Experimental results show that contrasted with several well-known cluster validity indices, the proposed index can yield more...

متن کامل

An Efficient Gene Selection Technique based on Fuzzy C-means and Neighborhood Rough Set

Selecting genes from microarray gene expression datasets has become an important research, because such data typically consist of a large number of genes and a small number of samples. Avoiding information loss, neighborhood mutual information is used to evaluate the relevance between genes in this work. Firstly, an improved Relief feature selection algorithm is proposed to create candidate fea...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)

سال: 2007

ISSN: 1083-4419

DOI: 10.1109/tsmcb.2007.906578